
Physics Analysis Tools Workshop Summary Report

F. Akesson, K. A. Assamagan∗, D. Best, S. Binet,

P. Calafiura, C. Collins-Tooth, K. Cranmer, J. Cranshaw,
S. Dean, F. Gianotti, N. Konstantidinis, W. Lavrijsen,

C. Leggett, P. Loch, T. Maeno, D. Malon,
D. R. Quarrie, S. Rajagopalan, P. Sherwood, S. Snyder

Abstract

The current status of various aspects of physics analysis tools are reviewed

in the general context of the software development for analysis. Feedback from

the user community and user requirements on the tools for physics analysis are

necessary in shaping the improvement of the existing tools and the development

of new ones. Solutions to known problems are presented and discussed.

1 Introduction

The first workshop of this series, since the physics analysis tools group was formed,

took place at the University College London (UCL) on April 5-7, 2004. At the time,

there were many different frameworks for analysis and the data formats known as

Event Summary Data (ESD) and Analysis Object Data (AOD) were not defined in

term of their contents and structures. The objective of that workshop was to study the

different approaches to the analysis domain, to identify commonalities and to propose

a baseline, unified framework for analysis. A summary of the UCL workshop can be

found here [1]. Following the UCL workshop, the first implementation of the AOD

classes (integrating the on-going work of the AOD/ESD Definition Task Force [2])

and AOD building tools were completed and the first tutorial on doing analysis on

ESD and AOD took place on June 21 2004 at CERN. The implementation of event

tags for the selection and collection of interesting events soon followed in collaboration

with the database group. These event tag tools have been used in the Tier 0 exercise.

A second tutorial was organized during the physics workshop in November 2004 at

CERN. As the interactive analysis in ATHENA [3] was becoming widely used, there

∗Corresponding author: ketevi@bnl.gov



Physics Analysis Tools Workshop Summary 2

have been many requests from users leading to the improvement and development

of other tools. A third tutorial on using ESD and AOD in analyses was organized

during the North American Physics Workshop in December 2004. At the time of

this writing, ESD and AOD are being produced from the samples generated for the

up-coming physics workshop in Rome. To help the growing user community of ESD

and AOD, a fourth tutorial was organized during the software week of February 2005.

The analysis framework proposed during the UCL workshop has taken a foothold

and looks viable:

• More and more people are using the ESD, AOD and the tools developed for

them in their analyses.

• Many problems reported by users are fixed by the developers.

• Various requests from users are implemented and integrated.

• Some users have taken a critical look at the current framework of analysis on

ESD/AOD/Tag and have given constructive criticism.

At the time of the Tucson workshop on physics analysis tools, the following analysis

options are available to the user community:

• The creation of combined NTuples (CBNT) from the reconstruction and the

use of ROOT [4] macros to operate on the NTuples. This has been around long

before the UCL workshop.

• The creation of ESD, AOD (and eventually event tags and event collections)

from the combined reconstruction leading to analysis codes in C++ as ATHENA

algorithms or analysis codes as Python [5] algorithms or scripts.

• Interactive analysis in ATHENA.

Access to ESD and AOD directly in ROOT is not a viable analysis option at the

moment. This is due to a number of technical complications that may be resolved in

the mid-term.

Given the current state of the analysis domain, as thus far summarized, the fol-

lowing topics were discussed during the Tucson workshop:

1. Integration of currently known user requests and requirements. Feedback from

the user community is recognized as important in this step.



Physics Analysis Tools Workshop Summary 3

2. The data format, if any, to use beyond the AOD: processing large statistics on

AOD is reported as being slow and transforming the AOD into NTuples is not

recommended since important tools such as back navigation (the links to the

ESD and the to raw data) are no longer applicable. The event view, discussed

in great detail during this workshop (see later in this document), may offer the

solution of ”NTuplelizing” the AOD while keeping needed features of POOL

(Pool Of persistent Objects for LHC) [6], thus maintaining the back link to the

AOD and ESD within the ATHENA framework.

3. The evolution of the interactive analysis tools and their integration with the

event display and visualization tools.

4. The tools for removing redundancies, overlaps and ambiguities in the AOD.

Since some of these may be physics analysis dependent, a set of tools are pro-

posed as examples/guidance to the user.

5. ROOT versus AIDA histogramming tools.

6. Issues (and proposed solutions) regarding object navigation and object associ-

ations. These issues are closely connected to StoreGate’s SymLink.

7. Evolution of fast simulation tools.

2 ATLAS Project Based Build

The basic strategy for the ATLAS project based build has been defined [7] with a

baseline set of projects which consists of core, detector description, event, simulation,

reconstruction and analysis. It is not obvious in which project some packages will go,

e.g., packages needed by the on-line monitoring or for calibration. The final project

decomposition might evolve. The tag collector II support for the project based build

is in place with the auto-tagging of containers. The support for hierarchical auto-

tagging of project packages will go into production soon after this workshop. The

prototype AtlasCore project is in place, based on the release 10.0.0, except for the

missing dependencies on Nova (to be dropped by the release 10.2.0). Most of the

other projects are currently underway. The AtlasCore project prototype is expected

to be completed by the end of April; all the project prototypes will be available by

the end of June 2005, to go into production by mid-September, although there might

be many iterations once the prototypes are available. The distribution kits will need

to be rethought in the context of the project based build: today, Pacman retrieves



Physics Analysis Tools Workshop Summary 4

a package and all the other packages upon which the needed package depends. It is

not yet clear how this will work across different projects.

3 LCG Application Area Reorganization and its

Implications

The reorganization of the LCG application area includes the merging of SEAL (Shared

Environment for Applications at the LHC) [8] into ROOT, the merging of the POOL

storage manager (otherwise unchanged) into ROOT. SPI and simulation projects

are unaffected. There seem to be two schools of thought on the implications of the

merging: on the one hand, it is seen as an optimized merge of the two cultures and

client bases, leading to the reduction of duplications and improved libraries. On the

other hand, the merging is seen as the absorption of SEAL into ROOT, improving

ROOT but keeping its culture, naming and packaging convention. ATLAS, CMS and

LHCb would like to see an internal reorganization and repackaging within an extended

ROOT, leading for example, to light weight vector and linear algebra libraries, a

plug-in manager not based on CINT. Further, the experiments also express the need

to see a detailed plan of this merging/repackaging quickly. The overall proposal for

combining CINT/Reflex [9] dictionaries looks good, to be discussed further during the

dictionary workshop in May 2005. PyReflex and PyROOT [10] will merge: technically

they cannot merge, thus this will be the “killing” of PyReflex but we will have one

tool with the capabilities of both. New Math libraries are proposed, to incorporate

the best of both the SEAL and the ROOT ones. We need to understand the packaging

and the naming convention in these math libraries. Furthermore, it is not clear how

the new math libraries relate to CLHEP [11]. The migration of the ATLAS software

to CHLEP 1.9 is on hold for a month or so in order to understand the issues better;

the Geant4 [12] team does not want to migrate from CLHEP.

The experiments can still influence the direction taken by the new ROOT project

as the CERN organization does put the experiments into the management hierarchy.

However, there needs to be a quick ”litmus test” to see whether the new organization

will be responsive and flexible. In this respect, there is the proposal that Physics

Vector and Linear Algebra Libraries be used as such a test; but this implies the

migration from CLHEP : it is not clear if this is desirable.



Physics Analysis Tools Workshop Summary 5

4 Interactive Analysis

There are two models for the interactive analysis. In the first model, the analysis

is done in ATHENA. One uses Python as a binding to ATHENA and ROOT, and

also for rapid prototyping. This is the baseline model. From initial feedback, users

seem to accept it. The second model is the PAW/ROOT-style analysis, that is, CINT

prompt instead of Python prompt and ROOT CINT is used to access ATHENA from

ROOT. There is clearly an interest in the community for this ROOT based alternative

to the interactive analysis. It is possible to satisfy both communities when the two

dictionaries, Reflex and CINT, are unified — a unification that will allow for full

interoperability between CINT and Python. In the near term, there is effort to make

the event view objects accessible from ROOT and ATHENA, which should satisfy

the most immediate need for interactive analysis.

With the introduction of Python, the user has to learn another language. What

does Python buy us that C++ cannot provide? It is not necessarily the number of

coding statements (C++ versus Python) but also the ease of use. Python lets one

concentrate on the problem to solve while in C++, one may have to worry about the

C++ apparatus and the overhead. Python has a large library of standard modules

available that can be readily imported, thus simplifying some tasks. Many non-

Python libraries come with Python bindings and are thus also easily available in

Python. Python is good for prototyping. But for batch processing of large statistics,

C++ should be used. If one is fluent in both languages, there is no problem. There

is a worry about the algorithmic part of Python: if one wants to write a complicated

algorithm such as a clustering algorithm, one can write the algorithmic code in C++

and use Python as glue (just create the dictionary for C++ algorithm) to make the

algorithm available in Python. But the reverse is not so straightforward: complicated

algorithms written in Python are not easily accessible in the C++ side: this is wor-

risome. It was therefore proposed that any algorithm/tool should be made available

as C++ API even if the internal development or coding is in Python. It should be

packaged to be usable globally, i.e., in the C++ side too. It is the responsibility of the

person who writes the algorithm/tool in the Python to provide the C++ interface.

We need to demonstrate that this Python interactive environment is viable by

getting more people involved. More complex analyses should also be exercised. Be-

ginning examples of complete analysis algorithms in Python should be made available

in the CVS repository under PhysicsAnalysis soon. Examples of using Python as a

glue to C++ are already available.



Physics Analysis Tools Workshop Summary 6

The interactive access to MC truth data in the AOD requires the implementation

of an iterator protocol, thus the introduction of the PyKernel/PyIter classes. Cur-

rently there is a small problem due to differences in the implementation of the iterator

in C++ and Python – this should be fixed in the near future.

Ideally, the interactive analysis environment should allow for the following:

• Ability to seek to, skip, and reprocess an event.

• Access to all levels of the data hierarchy including conditions data

• Access to event generation and simulation

• Execution of the reconstruction algorithms on raw data or on the ESD

• Analysis at the AOD, NTuples or Event View levels

• Data, algorithm, task browsing, and the event display and visualization (see the

section on the event display for details)

• Transparent transition from local to GRID analysis (this has not been demon-

strated yet).

• Access two event collections (e.g. signal and background) simultaneously.

• The possibility of modifying, recompiling and executing code without exiting

the interactive prompt. This is not possible for C++ libraries since outstanding

references cannot be located. But for Python modules this can be achieved;

indeed, the PyBus tool (part of SEAL) can pervasively change all references to

anything in one module by the equivalent references in another module.

One needed feature of the interactive analysis is the ability to seek to and read in

an arbitrary event from the input data stream; in general, the ability to re-initialize

the event loop without exiting the interactive session. A prototype tool to do this

exists, PyPoolSeek, but it does not call the reinitialize() of the event loop manager;

this should be done in the next version of Gaudi. In the meantime, the code is

available and usable with customized versions of some classes. The event counter

used in the PyPoolSeek tool is sequential. The extension of this tool for the run

number in addition to the event number, i.e., seek(runNumber, EventNumber), and

for suppressing the processing of intermediate events when one needs to get to a

specific event would be good to have and should be investigated; It was recommended

to initiate discussions with the relevant developers so as to get the customized versions



Physics Analysis Tools Workshop Summary 7

Figure 1: A schematic representation of the ATHENA - XMLRPC - Atlantis system
used to produce an interactive Event Display.

of the classes needed for this tool in the release and to provide the API for the

reinitialize() method of the event loop manager in the next version of Gaudi.

Two other features are needed to make the interactive analysis truly useful. The

processing speed, i.e., to be able to run over a moderately-sized sample and make plots

in few seconds. At the moment, we are at the level of few minutes; a caching schema

should be considered to improve the processing time. The other needed feature is the

ability to read different multiple samples in a single interactive session, e.g., open both

signal and background samples, make histograms on each and overlay the histograms.

5 Interactive Analysis and Event Display

Atlantis is moving in the direction so that it will be able to do everything available in

interactive ATHENA. The development surrounds three related technologies: interac-

tive analysis in ATHENA, the XML RPC Server, and Atlantis. It was demonstrated

that:

1. the EventDataToXML algorithm used to make the input files to Atlantis can

be run interactively,

2. the resulting XML file can be transmitted via XML RPC,

3. and Atlantis (running as an independent process) can listen to the RPC port

and update its display.

This is shown schematically in Figure 1. Furthermore, it was demonstrated that a user

could change a property of the EventDataToXML algorithm (for instance changing

from cone jets to Kt jets) and update the event display.

It was also shown that one can run a remote interactive ATHENA session and

steer it with XML RPC. In that setup, one asks the server to execute an interactive



Physics Analysis Tools Workshop Summary 8

ATHENA command on a remote interactive ATHENA session. Essentially, this sup-

plies the reverse form of the communication. The plan for Atlantis is to be able to

transmit back information to the interactive prompt.

Since the release 10.0.0, Atlantis is an external package, i.e., one gets automati-

cally Atlantis and Atlantis new as aliases after the ATHENA setup and it is copied

locally with the software distribution. Several new features, such as missing energy,

color coding for the calorimeters, etc, will be included by the time of the tutorial

on Atlantis during the software week in May 2005 (some of these new features are

already in Atlantis new). For the display of AOD objects, the list of the AOD and

their connections to the ESD are needed, to be provided by the physics analysis tools

group.

It was also discussed if Atlantis could rely on access to StoreGate directly. This

may be considered in the future as the use case for this becomes more clear. It would

be difficult to merge with other event display packages. Indeed, at the moment, there

is no plan to merge as Atlantis is in Java and the other event display in C++. It

was proposed that the ATLAS community tests both event display tools, then decides

whether merging both would be the course of action to take. One needs to understand

how to get the best aspects of both: it may be difficult to merge but at least one can

access each as an independent application.

6 SymLink

SymLink is a tool which allows one to record a container of objects as one type and

retrieve it as a container of a different type. For example, through SymLink, one can

record a container of electrons and later, for whatever reason or purpose, retrieve the

same container as a container of IParticles — the Electron and the Muon classes de-

rive from the IParticle class but the ElectronContainer or the MuonContainer classes

do not derive from the IParticleContainer class. How to relate the ElectronContainer

to the IParticleContainer is known as SymLink. Many analysis use cases of SymLink

exist, for example, when one would like to treat the container of Electrons and Muons

as containers of IParticles with no regard to the detailed differences in the Electron

and the Muon implementations. Although the current implementation of the Sym-

Link works for most use cases, it does not work in certain circumstances and it is not

compiler safe nor portable. In order to avoid the potential problems inherit to the

Symlink implementation, prior to the workshop, the SUSY group has implemented a

solution where a copy of the containers are made with the new container not owning



Physics Analysis Tools Workshop Summary 9

the contained elements — this is known as a view container. However, there are po-

tential persistency problems with the view container solution: the view vectors must

be persistified with original AOD for this to work. An alternative solution for the

view container would be to use ElementLinkVector, but this is breaks compatibility

with the container type.

The discussion during the workshop centered on finding a compiler safe, portable,

trustworthy and durable implementation of the SymLink tool. The proposal at the

workshop is to relate the containers (for example ElectronContainer and IParticle-

Container) by an inheritance structure in the same way as in the contained elements

(the Electron derives from the IParticle). However, for this solution to be viable,

two issues should be addressed. First, the type-checking of pointers on insertion: one

must ensures that illegal operations are not allowed, such as attempting to insert an

IParticle into an IParticleContainer SymLinked to an ElectronContainer (where the

IParticle is not an Electron). This can be done dynamically at runtime or statically

with an additional class, the ConstDataVector which would be used in the inheritance

hierarchy and as a base class of the DataVector class. The consensus was to do the

type-checking of pointers dynamically at runtime. Second, the pointer conversion on

extraction. Three possibilities were considered:

1. dynamic casting at extraction,

2. the ConstDataVector remembers the pointer conversion offset from the base

type,

3. or the ConstDataVector at the top of the inheritance hierarchy holds a table

lookup of pointer conversion offsets.

It was proposed to do an initial implementation of the SymLink with the dynamic

casting at extraction.

7 Tag, Streams, Physics Analysis : Near Term

Planning

The initial AOD created at the Tier 0 is a disjoint partition of events in the sense

that each event is written exactly once and similar events are written to the same file

for storage optimization. The event collections are pointers to events in persistent

storage, along with event-level meta data (the tags) used for event selection. The col-

lections are arbitrary: they may span many streams, and a given event may appear in



Physics Analysis Tools Workshop Summary 10

different collections. Physics groups and users may extract copies of their interesting

events by querying the tag database and filling their dedicated AOD samples. They

can also build new collections (probably ROOT-based) containing only the results of

the selection; or, possibly in the future, the selection criteria will be recorded in the

data management system. The usefulness and some feasibility tests of the current

tag-based infrastructure are being carried out as an input to the computing technical

design report. It was also proposed (before the workshop) to build collections for the

Rome Initial layout data at two levels: a master tag collection for all the Rome data

in MySQL or Oracle, resident at CERN, and a collection per merged AOD file in

ROOT format, using the tag definitions implemented by the physics analysis tools

group with one added field for scalability tests.

Per-file collections are useful in that one can navigate directly to selected events

or to specific event number ranges. Current ROOT-based event collections can be

browsed and analyzed directly in ROOT. Tools also exist to convert POOL event

collections into AIDA NTuple format. Some sample ROOT macros for making selec-

tions would be needed to understand the access patterns and determine an interface

which can be used with SQL- and ROOT-based collections in a transparent and ef-

ficient manner. Concatenation (or merging) of AOD files is also desirable to avoid

the proliferation of files — back navigation does work from merged AOD files. The

database group will optimize the back navigation infrastructure so that one needs not

navigate from merged AOD to un-merged AOD before reaching the ESD. Regarding

the master tag database, the current tag definition needs to contain sufficient infor-

mation to be able to distinguish the various Rome data samples. If that is not the

case, one could build the tag database as N database-resident collections, one per

dataset type, or add an attribute to the tag that specifies the data sample. Utilities

for querying the Rome database and creating dedicated AOD with only interesting

events are available and have been used to build event collections for a few Rome

files as a test of the infrastructure. It was noted that a grid-based initiative for build-

ing the tag database is not proposed in the time scale of the Rome workshop: the

tag databases at CERN will be remotely accessible and the event collection tools

are usable anywhere. Further tests of the tag database deployment, interface, and

capabilities are planned for the post-Rome period.



Physics Analysis Tools Workshop Summary 11

8 Histograms in ATHENA

AIDA provides abstract interfaces for histograms in order to support many technolo-

gies: HBOOK, ROOT, JAS [13]. The current AIDA implementation is not ideal. It

lacks functionalities, and can be cumbersome to use. This is a combination of a bad

design and our lack of control over it — in order to change bits of the AIDA inter-

face, we need access to three different packages, some of which are beyond our control.

The PyKernel/PyKHist classes are introduced to register AIDA Histograms to the

histogram service in the interactive session and also to provide missing functionalities

in the AIDA histogram interface.

We need to seriously investigate whether we should abandon AIDA and use ROOT

directly. This has the downside of locking us into a persistency scheme, increasing

our dependence on ROOT, and may not be a good solution for the High Level Trigger

(HLT) community. Although the HLT community prefers a ROOT API to an AIDA

one — which is consistent with the feedback from the physics community — an

abstract API rather than a concrete one is more desirable to the HLT community so

as to allow for flexibility in the implementation.

In the interactive session, the reinitialize() on the events should call the reinitial-

ize() of the histogram service if the user so desires, i.e., it is the client’s choice to

decide which histograms should be reset. AIDA does use ROOT behind the scene

but the ATHENA reinitialize() knows about one, not the other. It was suggested to

investigate the possibility of adding functionalities to the AIDA API so as to get ac-

cess to the ROOT histogram behind it: this will establish a ROOT-GAUDI histogram

symmetry.

9 Fast Simulation Tools

A fast simulation tool, known as the Atlfast comparator is being developed. The

objective is to tune the fast simulation parameters by making detailed comparison

with fully simulated or real data. The comparator therefore allows for the variation

and/or the tuning of the individual Atlfast smearing parameters. Furthermore, the

comparator will enable the selection of different parameterization schemes for indi-

vidual variations and use them in the smearing. The comparator will not generate

new parameterizations. Rather, it will allow the tuning of parameters already pro-

vided as input to the fast simulation. This is done by running and re-running the



Physics Analysis Tools Workshop Summary 12

fast simulation on the AOD MC truth1 and measuring the goodness of fit between

fast and full simulations: fast and full simulation histograms are compared through

a chi2 or Kolmogorov test using Minuit to alter the smearing parameters and feeding

them back into Atlfast. However, due to the high number of iterations required for

the Minuit minimization, Atlfast is run after the AOD production. This is a about

a hundred times faster that running Atlfast during the production of the AOD. It is

desirable to move the hard-coded Atlfast smearing parameters to job options to vary

them during the minimization without recompilation. The minimization algorithm is

written in C++ as Python seems too slow for the high number of required iterations

and the Minuit minimization was not successfully run in PyROOT.

Some use cases of the comparator include the comparison of full and fast simulation

quantities in the AOD; the tuning of Atlfast, etc [14]. From the initial comparison

on electrons, it is important to define accurately the quantities to compare and also

to make ”equivalent” cuts on both fast and full data samples. The core output of

the comparator would include vertex distributions, track multiplicities, particle and

jet distributions, b-tagging quantities and the development of tracking efficiencies as

a function of pseudo rapidity. It was recommended to implement track parameters

(TrackParticles) in the fast simulation AOD. The first automated tuning algorithm

will be available in the immediate future followed by a prototype (which should include

electron smearing and b-tagging parameters), and a production series in the time scale

of several months.

It was noted that one should eventually generalize this tool beyond the tuning of

just the fast simulation to include for example the tuning of event generators. There

should be a book keeping (documentation) on the different parameterizations and on

the different parameters.

10 Event View

The idea of an event view was proposed at the UCL meeting. At that time it was

vaguely defined as “a coherent and an exhaustive list of physics objects that are

mutually exclusive”. It was acknowledged that the event views are not unique; a user

may wish to consider different views of the same event. By coherent, it is meant that

the user needs not to carry out additional checks nor call additional tools to guarantee

the self-consistency of the view. By exhaustive it was meant that the sum of the

1The full MC event record is saved in the AOD for this. Atlfast is NOT run on the slimmed MC

event record



Physics Analysis Tools Workshop Summary 13

energies of the objects in the view should come out to be the observed energy in the

event and the total sum of the transverse momenta, including the missing transverse

momentum, should be roughly zero. Objects in the view should be mutually exclusive:

for example, a jet should not be listed also as an electron. Thus, overlap checking

(also referred to as redundancy removal, ambiguity resolution, and arbitration) is an

integral part of the tools needed to create the event views.

During the workshop we discussed the following in relation to the event view

• the state of overlap in the AOD and the source of that overlap.

• the current approaches to removing this overlap.

• the algorithms and tools needed to produce event views

• a python implementation of a class similar to the event view

• a C++ proposal for an Event View class

• the role of event views as an NTuple-like objects accessible in ROOT and

ATHENA.

It was noted that the objects in the default AOD can overlap (be redundant,

be ambiguous, etc.). Some of the overlap is removed during the AOD building,

e.g., the Electron and Photon collections do not overlap, due to the requirement of

a track match (Electron) or not (Photon) on the egamma object of the ESD from

which the AOD Electron or Photon is constructed. Similarly, overlap between “softe”

and “egamma” Electron candidates as well as high- and low-pT Muon candidates is

removed. However, many other collections of particles do overlap by default as the

removal process may be physics analysis dependent. Thus, a set of configurable tools

and examples are needed to help the user deal with the situation in the analysis

stage. In this respect, the SUSY group has implemented some redundancy removal

tools which could be generalized, made available to all users, and utilized in the

construction of event views.

An event class used in a Python analysis was presented: it is a collection of named

particle lists and functions to operate on the list. One does not write the event class

but just the functions and the tools for filtering and selections. The motivation

for this event class, styled after the ROOT based analysis in D0, came out of the

developer’s own physics analysis exercise in Python as the desire to be able to easily

get a handle on intermediate analysis results and cache data in memory in order to



Physics Analysis Tools Workshop Summary 14

speed up the interactive session. This example of an event view has been tested on

sample sizes of the order of 10,000 events. It uses root pickle (instead of pylcgdict)

to persistify histograms and the Python structure, e.g. h.elec0.pt.Draw(), in ROOT.

The root pickle tool is easier to implement (about 20 lines of code); it is possible to

have references to external objects (not just ROOT objects) but references to AOD

objects would be harder to implement. It was noted that it is a clever design and

implementation of an event class with some similarities with the concept of the event

view. Unlike in the event view concept, the algorithms for the redundancy removal,

the overlap checking and the ambiguity resolution are not integrated into this event

class but they can easily implemented.

Regarding a C++ implementation, two aspects of the event view were addressed,

the event data model (EDM) of the event view and the algorithm and tools to build

event view objects. An algorithm to build event views, based on the Expert Sys-

tems [15] was discussed, (see Figure 2). The user sets up a Strategy with the type

of Actions she wants to take for each Rule which is defined (by the event view Man-

ager). Each Rule has a set of Conditions (e.g., has a matched track) as well as a set

of Consequences (e.g., maybe an Electron). Then all the Criteria need to be satisfied

(e.g., thrust cut, isolation, ...). The algorithm machinery is hidden from the user

and encapsulated in the Engine. The event view Manager should have two modus

operandi :

1. Check that some hypothesis can be verified, and return accordingly (the best

or a set of) event view,

2. Find a default event view from a set of Conditions.

However, the detailed implementation of this Expert Systems based event view

algorithm needs to be worked before the feasibility and usefulness of the approach

can be established. The tools used by the algorithm to build the event view, which

in the Expert Systems approach would correspond to the Rules with their sets of

Conditions, include the redundancy removal, the overlap checking and the ambiguity

resolution.

Regarding the EDM component of the event view, a model was presented in which

the event view provided two major functionalities:

• The event view as a proxy for particle iterators in the sense that one can ask

the event view for the list of all the particles that make up that particular

view or for the list of all the Electrons in that view. As a result, SymLink



Physics Analysis Tools Workshop Summary 15

Electron

Rule
+ isValid(e : Electron)

Strategy
+ takeAction(validRules : Rule)
+ takeActions(validRules : Rule, electrons : ElectronContainer)

ConditionConsequence

Engine
+ process()
+ process(electrons : ElectronContainer, photons : PhotonContainer, rules : Rule)
+ process(electrons : ElectronContainer, electronRules : Rule)

EventView
- m_electrons : std.map
+ getElectrons(stage : const int) : const ElectronContainer*
+ beginElectrons(stage : const int) : ElectronContainer.const_iterator
+ endElectrons(stage : const int) : ElectronContainer.const_iterator
+ setElectrons(stage : const int, ele : const ElectronContainer*)

Manager
+ setStrategy(strat : Strategy)
+ execute()
+ process(electrons : ElectronContainer, photons : PhotonContainer, rules : Rule)
+ takeActions(strats : Strategy, electrons : ElectronContainer)
+ getEventViews(evtViews : EventView)

Action
+ execute()
+ execute(electrons : ElectronContainer)

Figure 2: A UML class diagram of an expert system, which could be used as a
framework to build event view objects.

would be restricted to navigation, not needed for typical user’s analysis. The

event view could have master iterators across the different particle containers.

It was cautioned that the event view should not duplicate the functionalities of

StoreGate nor become a mini-StoreGate.

• The event view could have the ability to store some user data, such as sphericity,

Higgs mass, etc, for that particular view of the event. The event view, with the

user data, would be persistifiable in such a way that the user data of the event

view would be accessible in ROOT as an NTuple-like object and could be read

back into the ATHENA framework. At the same time, the event view would

maintain the hooks and links (which are not necessarily understood by ROOT)

back to the original AOD in order to access the AOD during an interactive

session for instance.

A detailed design of an event view class was presented and discussed. The design

is shown in Figure 3. A working prototype of this design has since been created and

appears quite promising. Discussions are ongoing to provide the desired ROOT and

ATHENA compatibility.

While the Event View class is being developed, it was agreed that the algorithm

that creates the event view should also write out the view containers of the final state

particles (mutually exclusive and non overlapping objects) to StoreGate, i.e., a global



Physics Analysis Tools Workshop Summary 16

Figure 3: A UML class diagram of one Event View class proposed at Tucson.



Physics Analysis Tools Workshop Summary 17

data bucket over which the master iterators can operate.

Acknowledgment

Special thanks to P. Loch and J. Rutherfoord for hosting this workshop at the Uni-

versity of Arizona, Tucson, AZ, USA.

References

[1] UCL Workshop Summary Report, www.usatlas.bnl.gov/PAT/ucl workshop summary.pdf

[2] AOD/ESD Definition Task Force Report, ATL-SOFT-2004-006, (2004)

[3] ATHENA, http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/

[4] ROOT, http://root.cern.ch/

[5] http://www.python.org/doc/

[6] POOL, http://lcgapp.cern.ch/project/persist/

[7] https://uimon.cern.ch/twiki/bin/view/Atlas/ProjectReleases

[8] SEAL, http://seal.cern.ch

[9] CINT, http://root.cern.ch/root/Cint.html; The SEAL C++ Reflection System

Computing in High Energy Physics (CHEP04), CH-Interlaken, Sept. 27-Oct. 1,

2004

[10] PyROOT, http://wlav.home.cern.ch/wlav/pyroot/

[11] CLHEP, http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep/

[12] Geant4, http://wwwasd.web.cern.ch/wwwasd/geant4/geant4.html

[13] JAS, http://www-sldnt.slac.stanford.edu/jas/

[14] ATL-SOFT-INT-2005-002

[15] Expert Systems, http://freelock.com/technical/expert.php


